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Summary. Alternative methods to the standard Young technique for the construc- 
tion of Fermion wave functions in the spin orbital formalism are presented and 
shown to be equivalent to the standard technique. To develop these methods: (i) the 
starting or primitive function is factored into spin and spatial parts, (ii) the 
conjugacy feature required to satisfy the antisymmetry principle is exploited, (iii) 
the necessary commutation relations with the Fermion antisymmetrizer are shown 
to hold and (iv) the one-to-one correspondence between the independent picture of 
the Young tableaux and the independent Slater determinants is used. This last 
feature has the advantage of reducing all three methods to rapid efficient graphical 
procedures, Each method is analyzed to consider the amount of labor involved to 
carry it out. Several examples of the methods are given for constructing both 
electronic wave functions and spin functions. 
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1. Introduction 

It is well known that the Slater determinants provide the proper antisymmetry for 
electronic wave functions when expressed as a product of spin-orbitals. The rather 
small interaction between the spatial and spin parts of the wave function permits 
their separation into factors, and the overall antisymmetry constraint is met by 
requiring that the spatial and spin factors transform according to conjugate 
partners of conjugate partitions (or irreducible representations) of the symmetric 
group of the electrons. In this way the antisymmetric partition is ensured to be 
contained in the decomposition of the product [1]. It may be obtained by simply 
projecting it with the antisymmetric projector of the symmetric group. 

Since each factor (space or spin) is associated with a conjugate partner of 
a conjugate irreducible representation, each may be associated with a Young 
tableau (YT). There exist a variety of methods to obtain these associations [2-5]. 
The traditional way is to apply the Young projector [6, 7], 

NE~J~ = Q~l,p[~l~, (la) 
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to the YT. Here [2] specifies the partition of the symmetric group and r the partner 
or Yamanouchi symbol [8]. The column - antisymmetrizer Q(a~, includes all pos- 
sible permutations (accompanied by their parity factors) within the columns of the 
Young tableau, viz., 

QtX], = ~ (-)~q (lb) 
qeeolumn 

which the row-symmetrizer is a symmetric operator for the permutations within 
the rows of the YT, as its name implies. Explicitly, 

pt~J~ = ~ p. (lc) 
perow 

The application of the Young operators to the Young tableaux and the 
subsequent perfunctory antisymmetrizafion gives rise to the linear combinations of 
Slater determinants sought. For example, consider a Fermion system of identical 
particles and the two conjugate partners, [2]~ and [~[]~,, and define the correspond- 
ing Young tableaux as 

= [2]~ = YT(~ '~'q') 

and 

I ]"  k l "  [ = [2],, =YT(f2t~I"), 

where the k in [2]~ refers to the orbital q~, while the k in [~[]~, refers to its associated 
spin function ~k. The conjugacy of the Young tableaux requires that the object 
in the rth row and sth column in [2]~ be changed to the sth row and rth column 
in [~]~,. Under this definition the sum of the Yamanouchi symbols of the Young 
tableaux should give r + ~' = dtal + 1 = dtil + 1, where the d's denote the dimen- 
sions of the irreducible representations. 

It is quite important to notice that each conjugate pair of Young tableaux 
corresponds uniquely to a single Slater determinant. The symmetry projections 
with the Young operators will generate a linear combination of Slater determi- 
nants. 

The starting (primitive) functions, 4 ~° and f2 °, of the spatial and spin parts are 
thus symmetry adapted to the conjugate partners of the conjugate partitions in this 
fashion, i.e., with the aid of the Young tableaux. Explicitly, 

~b [~1' = Nt~l~b °, (2a) 

12t~l~' = Nt~l~,g2 °. (2b) 

It should be noted that in the above example conjugation has been defined in 
the traditional diagrammatic manner. Recently, it has been found that it may be 
defined mathematically by the parity operator n [1]. In this way the two Young 
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operators are seen to be related by conjugation. As a consequence, 

N[~'~, = 7zN[~ldz 

= ~Qr~l~rcrcpcxJ, rc 

= ~  
[,lecolumn (--)q q ] ~ [pEr~ow P l  ~ 

= p[ikQ[il,,, (2c) 

where Eqs. (1) have been used. Notice that in the third line the "column" and "row" 
refer to those of [2]~, whereas in the following lines they have been interchanged in 
order to refer to [2]~, and thereby remain consistent with the traditonal graphic 
definition of conjugation. Equations (2c) also show that the same permutations for 
the columns (rows) of [21 are used for the rows (columns) of [2],,. This result may 
have been expected. 

If we now exploit the fact that these two disjoint kinematic spaces, orbital space 
and spin space, must transform as conjugate partners of conjugate irreducible 
representations of SN in order for the resulting linear combination of Slater deter- 
minants to satisfy the antisymmetry principle, we have 

0 [;4' = Atl'qf~U&~ ['q', (3) 

where A [1NI is the antisymmetrizer. We have affixed the spatial labels to the result 
because it is related to the point-group symmetry, which is always shown by the 
symmetry of the orbital part. 

The conjugacy constraint, expressed as [2] ® [2], is seen to be a second rank 
inner direct product. The Young operator method will be shown to be represen- 
table in the following equivalent forms: 

~2~,  = A[I~(N[~1,,® N[~,) (f2o ® ~o) = A~j(N~l~.f2o ® N[~l~o), (4a) 

~N, = A[I"](N[~I,, ® E)(g2o ® ~o) = A[1NI(N[il~,f2o ® ~o), (4b) 

~E~1~ = ACl"1(E ® N[~J,)(f2o ® q~o) = AE1NI(f2o ® NC~,~o), (4c) 

where E is the identity operator. These expressions indicate that the procedures 
may be carried out upon the factored products, and the results may be sub- 
sequently antisymmetrized. The antisymmetrization does not have to be carried 
out in reality. One merely indicates each term in the resulting linear combination as 
a Slater determinant. 

Since Young operators play a central role in constructing the basis functions of 
the different irreducible representations of the symmetric group SN [8-14], and 
a drawback to their usefulness is that the number of permutations involved in them 
increases very rapidly with N, consequently, the Young operator method is a 
laborious procedure in the case of large N. Its simplification is essential if it is to be 
useful in such a situation. 
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2. New operator sets for fermion systems 

The realization that each conjugate pair of Young tableaux corresponds to an 
independent Slater determinant in a one-to-one fashion means that the application 
of the Young operator to the YT gives rise to a linear combination of Slater 
determinants. This one-to-one correspondence, then, leads to a direct graphic 
method of producing the projected linear combinations of Slater determinants. 
This graphic approach is advantageous because it is both simple and rapid. 

The most important feature in our method is that each independent picture 
(arrangement) of conjugate pair of Young tableaux corresponds to a single inde- 
pendent Slater determinant (one-to-one correspondence). In the resultant linear 
combination of Slater determinants the signs of the various terms are determined 
by the parity of the permutations which restore the determinant to its original 
order. In general, the results obtained in this way are not orthonormalized, but 
they may be made so by standard techniques, such as the Schmidt procedure of 
orthogonalization. 

To achieve further understanding and simplifications we must consider the 
conjugate nature of the spin and space factors involved in the inner direct product. 
Write the primitive electronic wave function (it is the simple spin and space product 
of [2], and [2],,) as 

~-~[ I ...kl... ~ ~ ['-] . . . .  ~ k ( a ~ ) ~ ( ~ , )  " " ,  

then consider the effect of a single permutation operator in freon space, say qkt 
(see Eq. (lb)), on YT(~b): 

N E? 

After antisymmetrization the right-hand side becomes 

= I"" (--)q~t(~k)q~k(~,)"'" I 
= I"" d~k(a~)(Ol(ak)"" l" (6) 

If we take cognizance of the fact that q ~  is a column permutation operator and 
thus commutes with the antisymmetrizer, we may write this process as 

( - ) q t ~ l  "" 4)k(ak)(Ot(at)"" I = (--)1 "'" 4t(ak)4k(at)"" I 
= l" "' ~)k(at)(OtOTk)"" I- (7) 
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"[~]" (see Eq. (lc)), acting on the Similarly, a symmetric (row) operator in spin space, vkl 
spin function, represented by YT(£2), will give 

( [ ~ ] ,  . . . . . .  ] )  ~ [ - ]  . . . .  ~k(ot)O~(~k)'",  

I"" ~k(~t)qS,(~k)"'" I" (8) 

after antisymmetrization. This process may be written as 

pt~l~,  . . .  q~(~)q,l(G~).. .  I = I "  q~k(~34~(~)"" I. (9) k l  

Comparison of the Eqs. (6) and (8) (or the right-hand sides of Eqs. (7) and (9)) gives 

pr~]~.~, ... ~(G~)q~(~t) . . .  I = ( - ) % , "  t~] I . . . . . .  4~(~k)~b~(G~) I. (10a) 

By similar reasoning it may be shown that 

q]~],.i ... ¢)k(ak)~b,(a,)... [ = (__)ptk~],l ... ¢)k(trk)C)t(aZ)''" I" (10b) k l  I 

Recalling the basic principle in the permutation group that an arbitrary 
permutation operator can always be represented as a product of transpositions, we 
will extend this result to more general cases. Performing the summation of Eqs. (lb) 
and (lc) in Eqs. (10) yields 

Pr:J~'l ... ~bk(~rk)q~,(G,)"-I = Qt~Jq ... d;k(~k)Ckt(e,)"" ] ( l la) 

and 

pt~]q ... ~b~(ak)~b~(~t)... I = Qta]"l "'" ~bk(~k)~bt(Gt)'.-I- (1 lb) 

These results may be expressed in a more tractable form by using 

I "'" (~k(ak)(at(al)"" [ = At'~J(£~ ° ® q~o). (12) 

The final expressions are 

(P[X]" ® E)A[I~](£2 ° ® ~b °) = (E ® QtxJ~)Atl~](~2° ® q~o), (13a) 

(E ® P[x]*)A[~](£~ ° ® ~b °) = (Q[~],. ® E)A[~](£~o ® ~bo). (13b) 

We first make use of these equations to show that Eqs. (4b) and (4c) represent 
equivalent procedures which must lead to the same results. 

(N[~1~. ® E)A[~1(£~o ® 4io) 

= (Q[~]~,p[~,]~], ® E)A[~I(~o ® q~o) 

= (Q[~],, ® E)(p[~l~, ® E)AO~](~o ® ~po) 

= (Qt~,]~, ® E)(E ® Qt~1~)At~](£~ ° ® ~o) 

= (E ® Q[~']')(Q[~]" ® E)At~](£~ ° ® q~o) 

= (E ® Q[x]~)(E ® Ptx]~)A[~](£~ ° ® 4 ~°) 

= (E ® Qt~]~PtX]*)A[~](£~ ° ® q~o) 

= (E ® Ntx1~)A[~)(£2° ® ~o). (14) 
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The third line of this equation is a result of Eq. (13a). The fourth line is a conse- 
quence of the fact that the two prefactors with the Slater determinant commute, 
since they operate on different spaces. The fifth line results from Eq. (13b). Thus, 
Eqs. (4b) and (4c) are equivalent procedures. Of course, this means that the starting 
form represents the Young spin projector method, while the last result represents 
the Young orbital projector method. For obvious reasons they may both be called 
the Q-P  method. 

The importance of Eqs.(13) is that they allow us to develop even more 
equivalent methods, which may reduce the amount of labor required to generate 
the electronic wave functions. Let us consider 

(E ® Nt~]~)Atl~](f2° ® ~po) 

= (E @ Qt~I'p[zl')A[I~](/2° ® q~o) 

= (E ® Qtz]'){(E ® Pt~]')AtI~](~2 ° ® q~o)} 

= (P[~]~' ® E)(E ® Pt~]~)Atl~](f2 ° ® ~o) 

= (p[~&. ® ptal,)Atl~l(f2o ® ~o) 

= Ariel(pill,T2 o ® pt~l~q~o) (15) 

To obtain the third line of Eq. (15) we made use of the fact that, since Eq. (13a) 
holds for a simple Slater determinant, it is also valid for a linear combination of 
Slater determinants, represented in the second line by the term in braces. We call 
this result the P - P  method. 

Equation (15) is derived from Eq. (4c). One may equally obtain the P - P  method 
from Eq. (4b), i.e., 

(Nt~J~, ® E)Atl~](f2o ® ~o) 

= Au~I(N[~],'I2 o) ® 4~ ° 

= Atl~](pt~l~.f2o ® pt~l~q~o) (16) 

We will use a slightly different way to reach this result: beginning with 
f2° = ~1~2 "'" ~mfim+ 1 "" fin and q~o = a l b 2 C 3  ""fN, we have 

Nt~l~,f2o~b o 

= (Qt~]~'pt~]~'I2°) ~° 

= [(1 - qkt + -..)(1 + Pi~ + "")f2°]q 5° 

= [(1 - -  qkt -t- ""  + Pi j  -b . . . .  qk lPi j  + "")f2°]q 5° (17a) 
and 

A[ 1~] (Q[ ~.],.p[Xl,, f2o) gb o 

= IO°q~° I -Iqk~O0q~°l + ... + Ip~fi2°q~° I + , . .(--)lqk,puO°,~°l + . . ' .  (17b) 

Comparing it to the P - P  operator method (the Method D in the Table 1): 

(pt~],'O°)(ptz],qS°) 

= [(1 + Pu + " ) ~ ° 3 [ (  1 + pk~ + ...)45o3 

= I n  O "}-Pi j f2  ° "4- . . . ] E ~  O --}-pkt~ ° "t- " " ]  

= f2Off) ° + P i j f 2 0 ~  ° + . . .  + f2Opk/~2 ° + . . .  q- p l j f 2 O p k l ~  ° + . - .  

= O°q~ ° + f2Opktq~ ° + "'" + p~jf204) ° + "'" + p~gOOpkzq5 ° + "" ,  (18a) 
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and, making use of the conjugate property of two Young operators for the spin and 
space parts (see Eq. (7) and the discussion following), we get 

At~J(pt:l+.Oo)(pt~J+~b o) 

= I~?O~bOl + I t?°pk,  q~°l + . . .  + [pijt2°c)° I ÷ ... + IpejQ°pk,  qS°l + . . .  

= ] O ° q S ° l -  Iqk~t?°qS°l + .-- + Ip/ jO°~b°l  + . . . .  Iqk~p,jt?°~b°l + . . . .  (18b)  

The results, i.e., (17b) and (18b), from two different operators are exactly the same in 
the form of the Slater-type functions. 

All of the six equivalent methods are collected in Table 1. 
Even though we have demonstrated that these six methods are equivalent, this 

does not mean that the amount of labor involved in each of them is the same. In fact, 
the work entailed in the Q-P method is much greater than that of the others. These 
striking similarities and differences are graphically illustrated in Table 1. The blank 
areas indicate where no labor is involved. Horizontal (vertical) bars indicate those 
areas where row symmetrization (column antisymmetrization) is required, and the 
cross hatched areas show where both of these operations are to be performed. 

Notice, from the expressions of the wave functions, that one does not actually 
have to perform the antisymmetrization. Instead it is only necessary to carry out 
the calculations indicated within the braces and simply designate the Slater deter- 
minants of the results by the conventional bar notation. 

In the Young operator for the irreducible representation I-N-p, p] there are 
a total of 2Pp!(N-p)! distinct permutations, of which 2 v permutations are in the 
column antisymmetrizer QtN-p, vl and p !(N-p)! are in the row symmetrizer PEN-"'1. 
For the conjugate irreducible representation [2 v, 1 N- 2p], there are again a total of 
2Vpt(N-p)! distinct permutations. However, in this case the column antisymmet- 
rizer now contains pt(N-p) t permutations, while the row symmetrizer contains 2 p. 
Thus, method A is the most laborious procedure. Methods B - D  are less tedious 
and each require the same amount of labor. Methods E and F are the most efficient 
procedures because they do not require the total number of permutations defined 
in Q and P. These truncated column and row operators are denoted by the primes. 

3. Applications 

An interesting point in our methods is that the independent pictures of Young 
tableaux are in one-to-one correspondence with the Slater determinants. By ap- 
plying the Young operator we permute the index numbers 1, 2, ... ; by the indepen- 
dent pictures we exchange the objects a, b, . . . .  Clearly, the permutations of the 
objects a, b, ... and the index numbers 1, 2, ... are isomorphic. In other words, it 
does not matter how many operators are used in the different methods; the final 
results just show as many as possible different (independent) rearrangements in the 
Young tableaux. In a detailed problem, we may proceed either by using the Young 
operators (from Methods C to F, see Example 2) or just by the different pictures 
(see Examples 1 and 3 below). 

Example 1. The construction of  basis functions 

Let us deal with a six-electron system with S = 1 and Ms = 0. The YD's for spin 
and spatial are 1-42] and [2212], respectively. From the traditional Young operator 
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Table 1. The six equivalent methods ~ for the construction of electronic wave func- 
tions by the young operator N ta]" 

Y. Yu et al. 

Method Wave function Young tableau 

A(double Q-P) (Number of operators required = [2Vp!(N-p)!]b: 

Atl~]{(NtiJ,'O °) ® (N[~I'~°)} =- 

B(spin Q-P) (Number of operators required = 2Pp!(N-p)!)b: 

Ail~l{(Qtil.ptil.,Qo) ® ~o) _= I 

C(space Q-P) (Number of operators required = 2Pp!(N-p)!)b: 

I I J 
Ariel{Q° ® (Q['q'PH'~°)} -= ] I 

D (double P-P) (Number of operators required = 2rp! (N-p) !)b: 

At'~I{((Pt~]~'Q °) ® (P[~']'4~°)} _=, :: : 

E(Q'-Q') (Number of operators required = 2e(N-p)!b: 

IIIIIIIIIIIIII 
Atl~l{(Q,t~.l~,~o) ® (Q,~,q,q)o)} =_ W 
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Method Wave function Young tableau 

F(P'-P') (Number of operators required = 2~(N-p)!)b: 

I I 
AWl{ (P't):l"f2°) ® (P'tZl'~°) } =- I I 

aA)-D) apply to all Fermion systems; E) and F) apply to electronic systems (or 
nuclear systems with I = 1/2) only. 
u The formulas apply for spin-½ particles only. Here N stands for the total number of 
boxes in the Young tableau and p stands for the number of boxes in the second row 
of the Young tableau which are placed on the left. 

method, a tableau belonging to the partition [2212] requires 2! * 4! = 48 operators 
from the column-antisymmetrizer and 2! * 2! = 4 from the row-symmetrizer. In all 
there are as many as 48 * 4 = 192 operations. But, based on our proposed Method 
F, there are only two independent pictures for the spin part (here the dashed lines 
were used for the independent pictures of the Young tableaux) 

(A) (B) 
and four independent pictures for the orbital part of symmetry [2212]: 

(19) 

a b  

c d cd 
e 

f 
(a) 

i 
a 

cd 

(b) 

f 
b 

dc 

(c) 

i 
a 

dc 

(d) 

(20) 

Then the result is given in a very direct way using only the six pictures and the eight 
Slater determinants from their combinations. (A)-(a) gives rise to the determinant 
l acefbd [. (A)-(b) gives rise to the determinant I bcef?td[ and finally, (B)-(d) gives rise 
to the determinant I bd~fdgr. The linear combination is 

ta~a2j lacefbdl + Ibcefdd[ + ladefH~l + [bdefdgl + lac~fgdl ao 

+ Ibc~fddl + lad~fHel + [bd~fdel 

- labcdefl + [ a b d e f l -  la6edefl + Idb~defl - labcd~f l  

+ rdbcd~fl - laG~d~fl  + Idb~dOf[. (21) 
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This is c o m p a r a b l e  with the interact ion of the sp 2 hybr id  of ca rbon  (da, dz, d3) with 
three hydrogen  in the case of CH3,  e.g., de te rminant  ]dlHldzHzd3H3] has 23 = 8 
terms. 

I t  is necessary to emphasize  tha t  these new methods  place no restriction on 
the orbitals. They  can be used in bo th  valence bond  (VB) theory  and molecular  
orbital  (MO)  theory. The  case depends only on the choice of the orbitals. They m a y  
be either a tomic  or molecular  orbitals. They  can also be all different (a, b, ... f 
s tand for different orbitals) or par t ly  the same (say b = a or d = c, etc.). This allows 
us to m a k e  all kinds of basis functions for either a localized or a delocalized 
t reatment .  

Example 2. The comparison of different methods 

For  the cons t ruc t ion  of one c o m p o n e n t  of the basis functions belonging to the 
p a r t i t i o n  [-2 2] in a four-electron system with S = 0 (the second componen t  for this 
par t i t ion m a y  be found by the same me thod  by changing the order  in bo th  Young  
tableaux). Tak ing  the first c o m p o n e n t  as 

1 2  

3 4  /3 /3 2 4  b d  

while using the following opera tors  for the spin par t  (see Eqs. (1)) 

N t221' = [ E  - (13) - (24) + (13)(24)] [E + (12) + (34) + (12)(34)], 

Q t221' = E - (13) - (24) + (13)(24), 

P tz2~l = E + (12) + (34) + (12)(34) (23) 

and the following opera tors  for the space par t  

N t/2j~ = [E - (12) - (34) + (12)(34)] [E + (13) + (24) + (13)(24)1 

Q [22h = E - (12) - (34) + (12)(34) (24) 

P t221~ = E + (13) + (24) + (13)(24) 

then taking cq c~2fl3/~4 and al b2c3d4 as the primitive functions, we have the same 
results shown below for all of the different methods.  

Me t hod  A (double Q-P): 

= {[E -- (13) -- (24) + (13)(24)] [E + (12) + (34) + (12)(34)]cq~zf13fl,} 

x {[E -- (12) -- (34) + (12)(34)1 [E + (13) + (24) + (13)(24)]alb2c3d4} 

= {[E + (12) + (34) + (12)(34) - (13) - (123) - (134) - (1234) -- (24) - (142) 

- (324) - (1432) + (13)(24) + (1423) + (13)(24) + (14)(32)]cqC~zf13/?,} 

x {[E + (13) + (24) + (13)(24) -- (12) - (132) - (124) - (1324) - (34) - (143) 

- (234) -- (1423) + (12)(34) + (1432) + (1234) + (14)(23)]alb2c3d4} 
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= 4(~c~f l f l  - f l c ~ f l  - c~flfl~ + f l f l~) 

x (abed + cbad  + 

- adbc  - cdba  + 

= 4 [ ( a b c d  + cbad  + 

- dabc  - adbe  - 

+ cdab  - bacd  - 

+ bcda  + dabe  + 

- d a b ~  - dbdd  - 
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adcb  + cdab  - baed - bead  - daeb  - cdba  - abdc  - cbda  

b a d c +  bcda  + dabc  + dcba) 

adeb  + cdab  - baed  - bead  - dacb  - abdc - cbda  

cdba  + bacd  + beda  + dabe  + deba)  + (abed  + cbad  + adcb  

bead  - dacb  - dabe  - abdc - cbda  - adbc - cdba  + bade 

deba) - ( g t b c d  + ~baY  + d d e ~  + ~dab - bacd  - bead  - daeb  

~bdd - ddb~ - ~dbd + bad~ + 6edd  + dab~ + dcb{t) 

- (a6(d  + cbdd  + ad~b + ed~tb - bacd  - bead  - dacb  - dabc - abde  - ebda  

- adbc - cdba  + bade + bcda  + dabe  + deba)]  

Atl~lO = 1 6 ( l a b e l -  I dbc d l -  lab~dl + I~cdl).  (I) 

Me thod  B (spin Q-P) :  

= {[E - (13) - (24) + (13)(24)] [E + (12) + (34) + (12)(34)]ele2f13f14} 

x { a l  b 2 c 3 & }  = 4 (~c~f l f l  - flc~o~fl - ~flfl~ + flf l~) x abed 

Ata~]~ --- 4(labSdl - I d b c d l  - l a U ~ d l  + I--d-bcdl. (II) 

Me thod  C (orbital Q-P):  

71 = {~z~ c~2f13f14} { [E - (12) - (34) + (12)(34)] [E + (13) + (24) + (13)(24)] a~b2c3d4}  

= {cq~2fl3fl¢} x {[E + (13) + (24) + (13)(24) - (12) -- (132) - (124) - (1324) 

- (34) - (143) -- (234) - (1423) + (12)(34) + (1432) + (1234) + (14)(23)] 

x a l b 2 c 3 d 4 }  = o:o~flfl x (abed + chad  + adcb  + cdab - bacd  - bead  - daeb 

- cdba  - abdc  - cbda  - adbc  - cdba  + b a d c  + beda  + dabc + dcba) 

A t l N J ~  = lab-c-d[ + Icb-a-dl + lad-~[ + led~l  - Iba~l - Ibc-d-dl-  Ida-~l - IcdHgtl 

- l a b d c [  - ] c b d a [  - l a d H ~ [  - [ c d H d [  + Ibadc[ + Ibcda[ + ]daH~[ 

+ I dcb-cil) = 4(labedl - Idbcd l  - la6~dl  + ]abcd]). (lid 
Method  D (double P - P ) :  

= {[E + (12) + (34) + (12)(34)]cqc(z f13f l ,~}{[E + (13) + (24) 

+ (13)(24)] a a bac3d4  } = (OCC~flfl "k- O~O:flfl + O~OCflfl + O~O~flfl) 

X (abed + cbad  + adcb  + cdab) = 4(abed  + cbad  + adcb  + cdab)  

Ar~Sl~ = 4(lab~d[ + Icb-adl + l a d ~ l  + [cda-bl) 

= 4 (labed[ - I~bdl - I a~edl + I abed  I). (IV) 
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Method E (double Q-Q): 

T = {[E - (13) - (24) + (13)(24)]o~lo:2f13f14}albzC3d4} 

= (c~flfl -- fi~c~fl -- ~flflc~ + flfi~c 0 x abcd 

= 4(abcd -- d b c d -  aE~d + abcd) 

A [1N] T = 4([abc--d[- [ d b c d l -  [aESd[ + [~--bcdl). (V) 

Method F (P'-P'): 

= {cq ~2f13f14} {[E + (13) + (24) + (13)(24)]albzc3d,}  

= (o~o:flfl) ×(abcd + cbad + adcb + cdab) 

= abcd + cbad + adcb + cdab 

AtlN]'e = label  + Icb~l + lad-~[ + Icd~l 

= labcdl -  I?tbcdl- la~edl + labcd[. (WI) 

Example 3. Spin functions 

Using the above methods to construct spin functions is even simpler. To make this 
process easily understandable, let us begin with the Young tableau of the spin part. 
Due to the electron spin one-half quantum number, these tableaux have only one 
or two rows. They are of the form 

[AIB[lo~lO~2""O~m'O~m+l""~kflk+l'"flN-2m 1 
I I 

where the areas A and C are occupied by different spin functions (one for spin up 
and one for spin down) while the objects in part B can be purely e-or fl or their 
mixture. 

According to the general Young operator method, it is necessary to apply the 
operator which includes all of the permutations, such as 

Y = QA+c(PA+BPc), (24) 

where Qa+c is the column-antisymmetrizzer for the part A + C, while PA+B and 
Pc are the row-symmetrizers for the parts A + B and C, respectively, and they 
commute: PA+BPc = PcPA+B. But, since the basic idea in this work is that the 
items appearing in the basis function are correct for the independent pictures in the 
Young tableau, it is only necessary to find these independent pictures by our 
equivalent methods. 

From the discussion in the second section, it is easy to find the correct formula 
for both spin function and its related spin-orbital function by the following 
formulas: 

spin-orbital ,~  qgl = AtlNJ(~°N[al~b °) 

= A[I~1(N[~]~'O°~ °) 

= A[IN](N[2],, ~o); (25) 

spin ,~ 0j = AtlN1(Nt~]"O°), (26) 
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where ~o _ f2%bo. This one-to-one correlation for spin function (0i) and electronic 
wave function (q~i) shows that once we have the basis functions for a partition [2], 
then we have the spin functions for the conjugate partition [~] because the 
operators in both Eqs. (25) and (26) are the same. Since the new methods are quite 
simple for the construction of electronic basis functions, so are the spin functions. 
The following is an example for a four-electron system with Ms -- S = 0 by the 
Method D. 

Let.  • . and 
a b 

c d 
stand for spin and space, respectively, and consider 

the independent pictures of the YT of space part (there is only one picture for such 
spin when using the Method D; although all the methods are equivalent, the proper 
choice of methods will give the result most directly): 

a b --, ~ b ;  b ~;  ~ b ; b ~ 

c d d c c d (27) 

we have the following determinants directly from the four independent pictures 

~o¢ = labcdl + [b&JI + lagdEI + IbMEI 

= labcdl - Idbcd[  - l a b M I  + IdbEdl (28) 

and the corresponding form for spin: 

0¢ = c~fl~fl - flc~c~fl - o¢fiflo~ + flc~flc~. (29) 

Similarly, another basis function is 

~o~ = l ab~dl + lcb~dl + l adE6l + I cdaGI 

= l a b i a l -  I ~ b c d l -  laHedl + I~bcdl, (30) 

its spin function is 

(31) 

In all these procedures, the 0¢ and 0¢ are just simply "copied" from q)¢ and q~¢, 
respectively. 

In contrast to some other operators, the basis functions obtained from Young 
operators are not orthogonal, but they may be made so either by standard 
techniques (such as the Schmidt procedure of orthogonalization) or in terms of 
the connection between the Young operator and others (e.g., its connection to the 
Wigner projection operator [8, 12, 13]). For example, the singlet spin eigenfunc- 
tions are 

~ = ~ p . p  - ~ - ~ .  + ~ = 0~, 

0¢ = 2o~c~flfl + 2flflc~u -- c~flc~fi - fle~B - c~flfie - flc~flo~ = 20¢ - 0¢. (32) 
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4. D i s c u s s i o n  

For any Fermion system the conjugate property of two quantities (say, electronic 
spin and orbital, nuclear spin and motion, etc) ensures that their total wave 
function satisfies the antisymmetrization principle: [2] ® [2]  = [1N] @ .... This 
conjugacy produces the conjugate of the Young operators N Ez1" and N tij' (see the 
discussion above) and then, the antisymmetrizer projects out the required antisym- 
metric property for the total function. So, from the point of view of the Young 
operator, there are always a few equivalent operator sets which allow us to reach 
the same antisymmetric wave function for any Fermion system. Say for two 
conjugate quantities A and B, there are either 

o r  

7t[.l~ = ALl"l[(N[Uk(po)® q~O] ( B - f r e e ) ,  (33a) 

7 jcuj~ = AE1N1[q~ ° ® (Nt~J¢'(p°)] ( A - f r e e ) .  (33b) 

Eqs. (33) give some insight into the rationale behind spin-free chemistry [15, 16] in 
a general sense. 

It is necessary to emphasize that the permutations contained in the so-called 
equivalent operators are not the same. Take operators N E~j" and N [~'l~ as an 
example: their permutations are different in both permutation order and sign. If 
(123) occurs in the first operator N tzj~, (132) will occur in the NIX]'; if(1234) occurs in 
the first and (-)(1432) will occur in the second, etc. Let hi, Pi and qi be any operator 
in the N N', pta~. and q[Xl~, respectively, the forms for the related three "operator 
pairs" are: 

I. PtZ)' = {p/} QLiI,, = {(_),,pi-1}; 

II. O[~J~ = {q,} pL~J~, = {(_)q,q:~l}; 

III. N H ' =  {n~} Qci],,= {(_), ,n;1}.  (34) 

Fortunately, all these differences will disappear under the action of the total 
antisymmetrizer and give the same final results. It is noteworthy to point out that 
the commutation of these Fermion operators with the antisymmetrizer is really 
what makes possible a spin-free quantum chemical approach to many-Fermion 
systems. The details of this statement will be discussed elsewhere. 

We have seen in the Eq. (2c) that parity conjugation produces another repres- 
entation of the Young operator which switches the order of P and Q, viz., 

N[~J,, = pc~l,,Qt~J,.. 

These operators may also be obtained by the nonequivalent operation of Hermi- 
tian congugation, i.e., 

ytZl, = pt~],Qt~J, = Nc~1, + (35) 

since Pt~J~ and QL~]~ are Hermitian. Comparing its action on the spin part (it will be 
the same if applied to the spatial part) 

= (pt~],,QC~]~.£2o)~o 

= [ (1  + p,~ + . . . ) ( 1  - qk, + . . . )£2o] ,~0  

= I-(1 - -  qk~ + ""  + p,~ + . . . .  P~2qk~ + "'" ) £2°] ~0 (36) 
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with that of the operator in the double Q method: 

= (1 -- qk~ ÷ "'" )120(1 -- q'i + "'" )~o  

= 12o~o _ qU120cI)O + ... + 1 2 o ( _ ) q i j ~ o  + . . . .  qk1120(_)qijOO + "" ,  

(37) 

it is easy to show that these two equations give rise to the exact same function when 
they are subsequently submitted to the total antisymmetrizer: 

Atl~l(yt~l~,12o)~ o = AW112O(yt~,q~ o) 

= A[1N)(Q[II~,12O)Qt~.I~ °) 

= 112°~° I _ Iqk~12o~o I + ... + Ip l j12°~°l  + . . . .  ]Pijqkt120~° I + . . . .  

(38) 

The equivalent methods for this alternative definition of the Young operator 
are shown in Table 2. 

The main thrust of this work has been to use Young operators in order to 
determine and analyze efficient algorithms to obtain spin states from a given set of 
spin orbitals. All methods shown here lead to essentially the same linear combina- 
tion of Slater determinants. Though the result of each method may have a differ- 
ent proportionality constant, the normalized result is unique and equal to that 
given by standard methods (within a phase factor), such as diagonalization or 
projection, i.e., 

i = " ' i  2 ""kig'~ [ 2]~]l'~LIk, (39)  
k 

where NI x]' is a normalization constant, C[¢ ]~ a scalar coefficient and Dk a Slater 
determinant of the spin-orbitals used. The matrix element of some operator H of 
interest in this basis of spin states, viz., (Olx]'i H[ O~"]'>, are easily determined by 
using the expansion of Eq. (39) and subsequently applying the Slater rules for 
matrix elements in a determinantal basis, a well-known technique presented in 
many textbooks (cf. [17]). 

Since the Young operator, N [~]~ or YtZ]', is essentially a projection operator, it is 
proper to compare these methods with standard projection operator techniques. 
Matsen's matric projector for SN [1, 8, 18] requires the use of all N! permutations 
of the symmetric group SN, a much more laborious procedure than any of the 
approaches presented here. Salmon gave another algorithm for constructing 
matrix units [19]. Like Matsen's method, it is based on the chain of subgroups 
$1 ~ $2 ~ . . .  ~ SN. For each Young tableau of SN one can define a chain of 
tableaux (and hence a chain of Young operators) determined by successively 
omitting the numbers N, N - 1, N - 2, ... etc. For the subgroup Sj,  there will be 
2P~p.i! ( j - p  j)!  permutations in the Young operator N~ zl" and the projection operator 
has the recursive form, 

e~ xl' = l-[ (N~ZJTe~Z+~i)(N~ZJ'e~ll )/k~ ~', (40) 
J 

where k~ aj' is a constant. Thus, it is seen that this product form contains many more 
permutations than those of either method presented here, for just the Young 
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Table 2. The four equivalent methods based on the young operator y[~l, 

Y. Yu et al. 

Method Basis function Young tableau 

G(double P-Q): 

H(spin P-Q): 

I(orbital P-Q): 

J(double Q-Q): 

A[1~1 [(yt ~1+. Qo)(yt~J,¢/,o) } __- j m 

f il+  
AEI~1{ f2° ® (P[~]'Q[~J'~°) } ~- I 

IIIIIIIIIIIIIIIIHIIIBIIIIIIIIIIIIIIIIIIB 
Atl+I{(Q[~I++Qo) ® (QE~+,cpo)} _= W 

l 

operators alone appearing in the factor for the Young tableau of SN are required for 
our most laborious approach, method A. 

In more recent years Poshusta and Kinghorn [11] have employed the elimina- 
tion theorem of algebrants to reduce the number of permutations in the Young 
operator to [(p + 1)t]Z(p + 1) N-zp- 1 and applied it to a set of atomic orbitals to 
obtain a valence-bond wave function. Their algorithm is based upon a spin-free 
formalism, whereas our methods are based upon Slater determinants, thereby 
requiring permutations to be carried out on both the spin and spatial parts. 
Nevertheless, it is still possible to make some comparison between their approach 
and our most efficient procedures (methods E and F of Table 1). Recalling that 
2P(N-p)t permutations are required to carry out methods E and F, we see that, for 
low values of p, the factorial predominates and thus the algebrant approach is more 
efficient than E and F. However, for 

p >1 [(N-p)~2], (41) 
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where the braces indicate the next lowest integer for an odd value of N-p, methods  
E and  F require fewer pe rmuta t ions  than  those of the spin-free a lgebrant  approach.  
This difference becomes more  p ronounced  as N increases. 

The b lank  areas indicate where no labor  is involved. The vertical bars indicate 
those areas where co lumn-an t i symmet r i za t ion  is required, and the pointed areas 
show where bo th  of these operat ions  are to be performed. 
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